Code No: P18CIE04	
HALL TICKET NUMBER	
PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE	
(AUTONOMOUS)	

III B.TECH I SEMESTER END REGULAR EXAMINATIONS, DEC/JAN – 2022/23 SOFTWARE TESTING

(CSIT Branch)

Time: 3 hours Max. Marks: 60

> Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A

> > Answer all the questions in Part-A (5X2=10M)_

Q.No.		Questions	Marks	CO	KL
1.	a)	List out the taxonomy of bugs.	[2M]	1	1
	b)	List the elements of flow graph.	[2M]	2	1
	c)	What is path expression?	[2M]	3	2
	d)	What is dead state?	[2M]	4	2
	e)	List the approaches to test data generation.	[2M]	5	1

PART-B Answer One Ouestion from each UNIT (5X10=50M)

		Answer One Question from each UNII (5X10=50M)						
Q.1	No.	Questions	Marks	СО	KL			
		UNIT-I						
2.		Explain consequences of bugs.	[10M]	1	2			
	OR							
3.		Illustrate boundary value analysis with suitable examples.	[10M]	1	3			
	•	UNIT-II						
4.		Explain the strategies in data flow testing.	[10M]	2	2			
	•	OR		•				
5.		Explain the path instrumentation in detail.	[10M]	2	2			
	•	UNIT-III		•				
6.		Illustrate path products and path expressions with suitable examples.	[10M]	3	3			
		OR		•				
7.		Demonstrate the reduction procedure with suitable example.	[10M]	3	3			
	•	UNIT-IV		•				
8.		What is a state graph? How they can be used in transition testing? Illustrate with suitable example.	[10M]	4	3			
	•	OR			•			
9.	a)	How to use decision-tables as basis for test case design? Explain.	[5M]	4	2			
	b)	How path expressions are used in logic-based testing?	[5M]	4	2			
	•	UNIT-V		•				
10.		Explain each step of node reduction algorithm in detail.	[10M]	5	2			
	•	OR						
11.		Describe the test data generation using Generic Algorithm.	[10M]	5	2			
				-				